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ABSTRACT

We provide a detailed analysis of direct detection lightwave systems employing

an optical preamplifier at the receiver aj -ive the closed form expression for the

bit error probability of WDM systems employing on-off keying (OOK) as modulation

format. In our analysis, we consider various cases in which the receiver model uses

either a finite-time integrator or Fabry-Perot filter operating in a single channel

or multi-channel environment. We take into account the optical amplifier noise,

the postdetection receiver noise, the shot noise, and the effect of the nonzero laser

linewidth.
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I. INTRODUCTION

Current development of optical amplifiers has advanced to the stage that their

widespread use in lightwave systems is certain in the near future [1]. Receivers

using optical amplifiers have been shown to be substantially more sensitive than

their counterparts [2]. Of primary importance is the use of the optical amplifier as

a preamplifier in a direct detection receiver. In this study, a unified approach to the

performance evaluation of direct detection on-off keying (OOK) lightwave systems

which take into account the effect of postdetection thermal noise, shot noise, and

the impact of nonzero laser linewidth is provided.

The direct detection OOK receiver to be analyzed is shown in Fig. 1. The

received signal is amplified by an optical amplifier of gain G. The optical amplifier

introduces additive white Gaussian noise (AWGN) with zero mean and power spec-

tral density (PSD) No/2 where No = Nphf(G - 1) [2, 12, 33]. The parameter N8 p

represents the spontaneous emission factor which is unity for an ideal amplifier, h

is Planck's constant (6.626 x 10-34 J.s), and f is the frequency. Because the optical

amplifier is not polarization independent, a polarizer is needed to pass the desired

signal and to block the light in the orthogonal polarization. In this study, the optical

bandpass filter is modeled by both a finite-time bandpass integrator with integration

time T' [6, 9-11, 33] and a Fabry-Pefot filter.

For the finite-time integrator, the noise bandwidth 11T' of the bandpass in-

tegrator is chosen to be the same as the noise bandwidth of the optical filter. The

equivalent lowpass impulse response of the integrator is h(t) = (1/T')[u(t)-u(t-T')]

where u(t) is the unit step function. For convenience of analysis, it is assumed that

the bit duration T is a multiple integer of T', that is, T = MT' [33].
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The photodiode has a responsivity R = req/hf where i, < 1 is the quantum

efficiency and q is the electron charge (1.6 x 10" 9 C). The output current of the

photodiode, which is proportional to the squared envelope of the receiver signal, is

processed by a detector which consists of a low noise amplifier, an integrate-and-

dump filter and a slicer [33].

In the case where a finite time integrator is employed, the amplifier noise

effect is most pronounced at low postdetection thermal noise. With a higher gain,

the amplifier noise is dominant and, consequently, the net amplifier gain is reduced

considerably. In the case where a Fabry-Perot filter is employed as an optical filter

at the receiver model, the equivalent lowpass impulse response of the Fabry-Perot

filter can be well approximated by an RC filter for both single ar - multi-channel

within the frequency range If - fol < FSR/20r where FSR is the free spectral

range and fo is the center frequency of the Fabry-Perot filter. For example, given

FSR = 3800 GHz, the approximation works very well for If - fat < 60.5 GHz. In

other words, the effects of adjacent channels within 121 GHz can be included. The

same model without the optical amplifier is analyzed in [29] and it is seen that this

model enables use to obtain a closed form analytical expression for the bit error

probability. In all bit error probability derivations, whether a finite-time integrator

or a Fabry-Perot filter is employed as the optical filter in the receiver model, it is

assumed that all channels are bit synchronous as in [29, 30].

This thesis is organized into three sections. In the second section, the receiver

models employing finite-time integrator, and the analysis is a reproduction of [33],

Fabry-Perot filter for single channel and Fabry-Perot filter for multi-channel are

analyzed. Each of these analyses obtain the mathematical framework, bit error

probability, and the numerical results deriving the detected signal envelope and its

density function. The last section provides the conclusions.

3
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II. ANALYSIS

The analysis is organized into three subsections. All three provide the math-

ematical framework, bit error probability derived from the statistics of the white

Gaussian postdetection thermal noise and the numerical results for the receiver

model considered. The receiver model to be analyzed is shown in Fig. 1.

A. FINITE-TIME INTEGRATOR MODEL

The optical bandpass filter is modeled as a finite time bandpass integrator

with integration time T'. The noise bandwidth 1/T' of the bandpass integrator is

chosen to be the same as the noise bandwidth of the optical filter. This model is

used because it is analytically tractable. This section is taken from [33].

1. Mathematical Framework

For mathematical convenience we adopt the complex enelope notation

of a real OOK signal. Thus, for a given transmitted bit bi the corresponding received

signal at the input of the optical bandpass filter in Fig. 1 is designated as follows:

r,(t) = VG-P bjeje(t)pT(t) + nc(t) + jn,(t) (1)

where pT = 1, 0 < t < T and zero otherwise, G is the optical amplifier gain, P is the

peak power at the input of the optical amplifier, 0(t) is the OOK laser phase noise,

and nc(t) and n,(t) are the independent in-phase and quadrature components of

the additive zero mean white Gaussian noise representing the amplifier spontaneous

emission noise. The PSD of n,(t) and n,(t) is No/2 (we use No/2 instead of the usual

lowpass PSD No because the magnitude of the signal component is V/GIP bi instead

of the usual v/2-iPbi for complex envelope). Let r be the extinction ratio of the

laser source defined as the ratio of the transmitted power for the logical zero to that

5



for the logical one. Then b0 = Vr/(1 + r) for the logical zero, and b, = 01/(1 + r)

for the logical one.

a. Approximation of the Detected Signal Envelope

The output signal of the optical bandpass filter is given by

1 o0
si(t) f 00 J__U() - U(-r - T'lri(i - T)dT

- jT'1 0r'r(t - r)d-r

1 ri(r)d- (2)

The photodetector with responsivity R detects the squared envelope Ris,(t)12. This

signal current plus the shot noise current vi(t) generated by the photodiode, and

the postdetection thermal noise current w(t) are scaled by 1/TRGP and integrated

to produce the decision variable

i - TRPT RIsi(t)12dt + TRGP v,(t)dt

+TRGP RP
Y-•RGP fw(t)dt

=xi+y+w (3)

where

Xi =TRGp 1  Risi(t)I2dt (4)
TRGP (51i foTvi(t)dt (5)

Vi=TRGP

W = 1 To w(t6d
w TRGP (6)w(t)dt

We model w(t) as a zero mean white Gaussian noise current of spectral density Wo.

It is seen that the variance of a•, of w(t) is

a2= Wo(7
- TR 2G2p2  (7)

6



The shot noise current v,(t) can be modeled as a zero mean Gaussian noise current

with spectral density Voi as follows [15]:

Voi = qRE{Is,(t)J2} (8)

The variance av of v,(t) is thus given by

,, qTR 2P2 {JIS,(t)12} (9)

The value of 4, can be computed from (AI) and (A4) as follows:

2 2qM2 lb (7r_#T + -_ .pTM qMNphf/(G-1)
, TRGP(r/T)2  M + T2RG2P 2  (10)

where / is the laser linewidth.

The statistics of Xi are very difficult to obtain. Therefore, we make

the following approximation of Xi. We note that the equivalent lowpass impulse

response h(t) of the optical bandpass filter is assumed to be time-limited to T' =

TIM. Thus, the integrand RIs,(kT')12, k = 1,2,.. -,M in (4) is evaluated at t = kT'

where there are k independent and identically distributed (iid) samples of RIs,(t) 12

during an interval T. Thus 1s1(kT')12 is obtained from disjoint integration intervals

where the phase noise O(t) has independent increments and the noise n,(t) and n,(t)

are altogether independent over disjoint intervals. Using the above fact we can

approximate Xi as the sum of M iid samples T'Rlsi(kT')12/TRGP. That is

1 MXi -_ MG----P - Isi(kT')1 (11)
k=1

Substituting (1)-(2) into (11) we obtain

M bZk 2

Xi EI" +Nck + jNik (12)

where

= IM ejo(t)dt (13)
.k-I)T



1 = nc(t)dt (14)Nc = T'V/"M'-G P J(k-I)T#

i ~ ~~NA = TeMnM- ~~~,n(t)dt (15)

The random variables Nck and N.k are independent Gaussian random variables with

zero mean and variance a 2 given by

a2 = No Nhf(G - 1) (16)

2TGP - 2TGP

The approximation of Xi in (12) is equivalent to the modeling of the integrate-and-

dump filter as a discrete-time integration that sums over M samples taken every T'

seconds at the output of the photodetector [6, 13]. We remark that both Xi and its

approximation have the same mean value. If Is,(t)12 has a constant spectral density,

then Xi and its approximation also have the same variance. This happens when M

is large and the spectral density of Is,(t)12 can be considered constant within the

bandwidth l1T of the integrate-and-dump filter.

b. Probability Density Function of the Detected Signal

Envelope

From (11) we observe that Xi is approximated by the sum of squares

of 2M iid Gaussian random variables. Therefore, Xi is approximately noncentral

chi-square distributed with the following conditional probability density function

(pdf) fx,(xjIjy) [18]

fx,(xih') = 2cr (i•-/M) ) expj , +2o, 2 }/
'M-1 (V ,xM)

TGP (MXz,(M-l)/ 2  fTGP(xr + b2-y/M)
N.,hf (G - 1) 02x) I Nphf-(G -1)J

8



IM-I 2TGPRfi-f /M (17)

where IM-1(') is the modified Bessel function of order M - 1, and -Y is the value

assumed by the random variable defined as follows:

MrI= E IZk 2  (18)

k=1

In the special case when the extinction ratio r = 0, then b0 = 0, and fxo(xo) in (17)

is a chi-square probability density function (pdf) given by [18]

fxoxo) 1 ( TGP \)MxM~jexfj TGPX0  19fXo(XO) = TM - 1)! (,Noph- (G- 1) 0°-x -Nphf(Ga- T) (19)

The pdf of fx,(xijy) can be obtained by averaging fx,(xiyt) over Y. Thus knowing

fr(-) we get

fx,(xt) = 0 fx,(xijy)fr('y)d-y (20)

2. Bit Error Probability

For a detection threshold a, the bit error probability conditional on the

mean Zo and x, assuming a combined shot noise current and postdetection thermal

noise current spectral density Voi + WO is given by

P6(xox 1)= ¼erfoc( _o-o)+1erfc(ba) (21)

where the complimentary error function erfc(.) is defined as

erfc(a) = 2= j e-xdx (22)

and ar4, i = 0,1 are the variances of Y, in (3)

q E{IS,(t)I2 } + Wo (23)

TRG2 p2  TR2GP 2  (

9



The bit error probability Pb is obtained by taking the expectation of Pb(xo, xj) with

respect to xO and zx by using (17)

PA = 'Joerfc($.. )fxo (xo)dxo

+ 4 erfc (X-a fx&(xl)dxi (24)

The optimal threshold that minimizes the bit error probability is the value that

satisfies the following equation

fLoerfc (c'.io) fx(x)dxo~f efc(x1 x&f(x)dx (25)

From the above analysis it is seen that the evaluation of the bit error probability Pb

requires the knowledge of the pdf fr('y) of r in (18) which in turn requires the pdf

of IZkI2 in (13). The pdf of the random variable IZkI 2 has been studied extensively

in [13, 14], [20, 21]. The evaluation of Pb in (24) is computer intensive even in the

ideal case of no laser phase noise. When laser phase noise is taken into account, the

pdf of r must be obtained from the pdf of IZkI 2 via an M-fold convolution.

3. Numerical Results

In this section we present numerical results for a direct detection light-

wave system with the following parameters: r = 0.05, 1/T = 500 Mb/s, G = 100

and 1000, and Wo = 10-24, 10-23, 10-22 (A2/Hz). Figure 2 shows the bit error

probability Pb versus the input power P (dBW) as a function of postdetection noise

spectral density W0 for a receiver without the filter and the optical amplifier. Figure

3 shows Pb versus P for G = 100, M = 10 without phase noise and with phase noise

of #T = 1 as a function of Wo. At Pb - 10-15, the net amplifier gain without (with)

phase noise is 19.6 dB (19 dB) for W0 = 10-22 A2/Hz, 18.6 (18 dB) for Wo = 10-2

A2/Hz, and 16.3 dB (15.7 dB) for WO = 10-24 A2/Hz. It is seen that the amplifier

noise effect is most pronounced at low postdetection noise.

10
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Figure 2: Bit error probability versus input power for a system without optical
amplifier as a function of postdetection noise spectral density Wo. A: W0 = 10-22
A2/Hz, B: Wo = 10- A2/Hz, C: Wo = 10-24 A2/Hz.
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Figure 3: Bit error probability versus input power as a function of postdetection
noise spectral density Wo with G = 100, M = 10. A: Wo = 10-2 A2/Hz, B:
Wo = 10-' A2/Hz, C: Wo = 10-2 A2/Hz.
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Figure 4 shows Pb versus P for G = 1000, M = 10 without phase noise

as a function of Wo. At Pb = 1015, the net amplifier gain is 26.4 dB at Wo = 1022

A2/Hz, 22.1 dB at W0 = 10-23 A2/Hz, and 17.2 dB at Wo = 10-24 A2/Hz. It is

seen that with a higher gain, the amplifier noise is dominant and consequently, the

net amplifier gain is reduced considerably. Comparing the two systems that employ

optical amplifiers with gain G = 100, and G = 1000, respectively, we observe that

is a net improvement of 6.8 dB at Wo = 10-22 A2/Hz, 3.5 dB at Wo = 10-'

and only 0.9 dB at Wo = 10-24 A2/Hz for G = 1000 over G = 100. Besides

that, Fig. 5 shows the optimized threshold versus input power P for G = 100,

M = 10, 30, 50, and 100. As it is described in (25), the optimal threshold that

minimizes the bit error probability is the value that satisfies the equation given

in (25). As we can see from Fig. 5, optimized threshold value decreases as input

power increases for all M values. For considered values of M, which are 10, 30, 50,

and 100, the optimized threshold appears to converge to about 0.5 for higher input

power values. We conclude that a larger gain amplifier should be used when the

postdetection noise is large, and a smaller gain amplifier should be used when the

postdetection noise is small.

B. FABRY-PEROT FILTER FOR SINGLE CHANNEL

The desired signal is amplified by a preamplifier and then filtered by using a

Fabry-Perot filter. The photodetector has a responsivity R (A/W). The detected

current is amplified by a low noise amplifier that adds a postdetection thermal

noise with spectral density No (A2/Hz). The decision variable at the output of the

integration is compared to the threshold in order to be able to determine whether

a bit zero or bit one is present.

13
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Figure 4: Bit error probability versus input power as a function of postdetection
noise spectral density Wo with G = 1000, M = 10. A: Wo = 10-22 A2/Hz, B:
Wo = 10-2 A2/Hz, C: Wo = 10-24 A2/Hz.
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Figure 5: Optimized threshold versus input power as a function of M with G-
1000, postdetection thermal noise Wo = 10-22 A 2 /Hz.
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1. Mathematical Framework

Again, we adopt the complex envelope (equivalent lowpass) notation of

a real OOK signal for mathematical convenience. For single channel analysis, we

normally ignore the intersymbol interference (ISI) and adjacent channel interference

(ACI) components. Detailed analysis including ISI and ACI components are per-

formed in the multi-channel case. For a given transmitted bit bi, the corresponding

received signal at the input of the Fabry-Perot filter in Fig. 1 is designated as

follows:

ri(t) = v/'i bo,opr(t) + nc(t) + jn.(t) (26)

where G is the optical amplifier gain, P is the peak power at the input of the

optical amplifier, nc(t) and n,(t) are the independent in-phase and quadrature com-

ponents of the zero mean AWGN representing the amplifier spontaneous emission

noise (ASE) and
1 O<t<ZT

PT -(27)

0 otherwise

The Fabry-Perot filter can be characterized by the following equivalent lowpass

transfer function [31, 32]

H~f1 -p 1 -A-pH(f) =I IA p

1 - pe-j2wfIFSR 1 - p

(28)

H(f) = 1 A p( 2irf \ ( 2wf i -p
1 - pcos -FSRI + jpsin ( 2f1

FSR) FSR,

where p is the power reflectivity, A is the power absorption loss (A = 0 for an ideal

Fabry-Perot filter) and FSR is the free spectral range. For If I < FSR/20r and
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assuming A = 0, we can approximate H(f) as follows

H1) -p 1H(f ) ;zz =

27rfp + 27rfp(1-P) +j FSR 1+j(1 - p)FSR' 2a
(29a)

1 If I < FSR/207r

C

where
FSR(1 - p) (29b)

P

The free spectral range FSR can be related to the full width at half

maximum (FWHM) bandwidth B and the finesse F of the Fabry-Perot filter as

FSR = 7r.1p-- B = B. F (30)

1-p

Thus, if the signal is bandlimited to If I < FSR/20Or, we can actually use (29), but

with the frequency covering the entire frequency spectral range, that is, we can truly

approximate (28) with a single-pole RC filter with the following tra,.sfer function

and impulse response, respectively,
1

H(f) = .2rf (31)
1+j-

C

h(t) = ce- , t>0 (32)

The magnitudes of H(f) of the Fabry-Perot filter in (28) and its approximated single-

pole RC filter in (31) for p = 0.99, F = 312.6, B = 12.16 GHz, and FSR = 3800

GHz, remain identical and attenuate rapidly while the phases differ as the frequency

increases [29].

The above approximation is valid for dense wavelength division multi-

plexing (WDM) analysis when the filter finesse F is large or equivalently the FWHM

bandwidth B is small since the equivalent lowpass signal must be bandlimited to

17



about Iff < FSR/2O0r. When If I > FSR/2Oir, the magnitude of H(f) is very small

and therefore, the effect of ACI beyond this frequency range is negligible.

a. Derivation of the Detected Signal Envelope

Since we are interested in the detected bit boo in the time interval

(0, T), we consider the output prearnplified and filtered Si(t), given by

Si(t) = SB(t) 0 < t < T (33)

where SB(t) is the desired signal, which is the convolution of the desired signal and

impulse response h(t) in (32), as

h(t) = ce-a t > 0 (34)

SB(t) = V/--Pbo,ojfoh(t- r)dr (35)

SB(t) = V'G--Pbo,o(l - e-) , 0 < t < T (36)

The photodetector with responsivity R detects the squared envelope RlSi(t)12 . This

signal plus the postdetection thermal noise current w(t) are scaled by 1/TRGP and

integrated to produce decision variable,

TG =T RISi(t)I2dt + TRGP w(t)dt (37)Yi=TRGP 0TG

Yi = Xi + W (38)

where

1= IT Rlsi(t)12dt (39)X-TRGP

W = RGP Io w(t)dt (40)

We model w(t) as a zero mean AWGN current of spectral density of Wo. It is seen

that the variance of au, of w(t) is

a WoT _ o (41)
= T 2(RGP)2 - T(RGP)2
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As it is described in (37), the decision variable Yi can be easily found for zero and

one bit as follows,

Yo = X0 +W (42)

Y", = X, + W (43)

As it can be seen from above, since we ignore shot noise in this analysis, the variances

of Y1 and Y2 are equal to each other.

0 2,2 = Or, = O2Y (44)

Xi can be computed from (B.5) and found as (B.6)

X, = ,o [1 - 2 1 _2ct)] (45)
1 ( T( 1 - e--c) + '--(1 -

Using the fact that the noise nc(t) and n.(t) are altogether independent over disjoint

intervals and the random variables Nc and N, are independent Gaussian random

variables with zero mean and variance oi computed from (B.18), we can define

variance as

0 o2 Nh(G- 1)c (46)
= 4MGP

b. Derivation of Probability Density Function of the Detected

Signal Envelope

As it is described in the first section, Xi is approximately noncentral

chi-squared distributed with the following probability density function (pdf) f1, (Xi)

[18], -1/2
-1 XzI • M-1/e-(.+0)/20l2 1 k ) (47)

Ai Or M-1 2 (7
,(2) 2 ) ( 1 )

where

b [ 2 - eCT) + 1 -2cT)
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boo 1 for bit one (49)

bo l+r) for bit zero (50)

a2 h(G - 1)c (51)
4MGP

In the special case where the extinction ratio r = 0, since b0,0 = 0 for bit zero, pdf

of f2,(zx) in (47) becomes a chi-square pdf given by [18],

f'. (Z 0 ) = (M - M-1 CZxo2VO (52)f=°;r)-(M - I)!(2qro2)M°-e-/•° (52

2. Bit Error Probability

For a detection threshold a, the bit error probability is conditional on

the mena xo and x, and given by

Pb(zo, X1) = 1erfc (a__- ) + lerfc X1 - y (53)
4 \Vý2Gy 4 J r-a

where erfc(.) is defined as in (22) and 4y,, i - 0,1, are the variances of Y1 in (37)

r2 = 0, = = a (54)

We can represent both variances as a2, since they are equal to each other. The bit

error probability is obtained by taking the expected value of Pb(xo, x1) with respect

to xo and x, using (47),

A 11 erfc ( -To) f.(xo)dxo + j erfc ( a ., (xl)dxl (55)

The optimal threshold a that minimizes the bit error probability is the value that

satisfies the following equation also given in (25)

10o0 erfc (_-XO) fxOdxo = j erfc ( x& ` f .(x)dx(6

V2 cry,, V2 '-( (56)
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3. Numerical Results

In this section, we present the numerical results for a single channel

direct detection lightwave system employing a Fabry-Perot filter and an optical

amplifier at the receiver model in Fig. 1 with the following parameters: bit rate

Rb = 500 Mbps, optical amplifier gain G = 100 and 1000, photodiode responsivity

R = 0.5, FSR = 3800 GHz, c = 38.4 GHz, p = 0.99, thermal noise spectral density

W0 = 10-22, 10-23, 10-24 (A 2/Hz), and M = 10, 13, 20, 40 where M = TIT',

T is the bit duration (1/Rb) and T' is the time constant of the optical bandpass

filter. Since bit rate Rb = 500 Mbps, bit duration T is 2 ns. If we chop the impulse

response of the filter at 0.05 ns, 0.1 ns, 0.15 ns, and 0.2 ns, M has the values of

40, 20, 13, 10, respectively. Figures 6, 7, and 8 show the bit error probability Pb

versus peak input power P (dBW) as a function of M for the thermal noise spectral

density WO = 10-22, 10-23, 10-24 A2/Hz with G = 100. As M decreases, it is

obvious that more input power is required to achieve Pb = 10-15 as compared to

finite-time integrator. In the case where finite-time integrator is employed as M

decreases, less input power is required because the noise variance given in (16),

2 N.phf (G - 1)

2GPT

is independent of M and even if T' is varied, it has constant T. Therefore, varying M

does not effect the noise variance but it effects the signal power. For the Fabry-Perot

filter, the variance given in (46),

2 _ Nophf(G - 1)c

4MGP

depends on the M value, and as T' is varied, M varies accordingly (M = T/T').

So, as M decreases, noise variance gets larger and more power is required to achieve

PA = 10"5. As it can be easily seen from these figures, the role of T' is more
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Figure 6: Bit error probability versus input power as a function of M with G =
100, Wo = 10-' A2/Hz (Fabry-Perot filter).
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Figure 7: Bit error probability versus input power as a function of M with G =
100, Wo = 10-' A2/Hz (Fabry-Perot filter).
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Figure 8: Bit error probability versus input power as a function of M with G =
100, Wo0 = 10-24 A2/Hz (Fabry-Perot filter).
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significant for smaller thermal noise values. This is more pronounced with a high

gain amplifier (G = 1000) as can be seen in Tables 1 and 2 and Figs. 9, 10, and 11.

Detailed comparison is as follows:

Table 1: Comparison between M = 10 and M = 40 with G = 100 (see Figs. 6,
7, and 8).

M=40 M = 10
Wo (T' = 0.05 ns) (T' = 0.2 ns) Difference

(A2/Hz) (dBW) (dBW) (dBW)

10-22 -71.0 -70.0 1.0

10-23 -75.2 -73.0 2.2

10-24 -78.9 -73.8 5.1

Table 2: Comparison between M = 10 and M = 40 with G = 1000 (see Figs. 9,
10, and 11).

M = 40 M = 10
Wo (7' = 0.05 ns) (T' = 0.2 ns) Difference

(A2/Hz) (dBW) (dBW) (dBW)

10-22 -77.9 dB -73.8 dB 4.1 dB

10-23 -78.7 dB -73.9 dB 4.8 dB

10-24 -78.8 dB -73.9 dB 4.9 dB
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Figure 9: Bit error probability versus input power as a function of M with G =
1000, Wo = 10-22 A2 /Hz (Fabry-Perot filter).
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Figure 10: Bit error probability versus input power as a function of M with
G 0 = 021000, W0 - 02 2/Hz (Fabry-Perot filter).
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Figure 11: Bit error probability versus input power as a function of M with
G = 1000, W0 = 10-24 A2/Hz (Fabry-Perot filter).
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When we compare the finite-time integrator and Fabry-Perot filter with

each other, Table 3 shows that the finite-time integrator has better performance than

the Fabry-Perot filter for larger T'. This improvement of the finite-time integrator

over the Fabry-Perot filter gets more significant with high gain amplifiers and lower

thermal noise values as displayed in Table 4. Performance margins decrease with

increasing thermal noise values.

Figures 14 and 15 show that the Fabry-Perot filter has better perfor-

mance than finite-time integrators with a low amplifier gain (G = 100) for low

thermal noise values (Wo = 10-23 A2/Hz, 10-24 A2/Hz) and both have the same

performance for a higher thermal noise value of WO = 10-22 A2/Hz with smaller T',

which implies a higher values of M due to the relation of M and T' (M = TIT') for

a constant bit rate. This improvement of the Fabry-Perot filter over the finite-time

integrator is more pronounced with a high gain amplifier (G = 1000) as shown in

Figs. 16 and 17 and tabulated in Tables 5 and 6.

As a result, the choice of T' and consequently, the value of M plays

a great role for the systems employing the Fabry-Perot filter and the high gain

amplifier when the postdetection thermal noise is small. The systems employing

finite-time integrators and high gain amplifiers have better performance than those

employing the Fabry-Perot filter when T' (time constant of the filter) is large and

thermal noise is small. The systems with the Fabry-Perot filter and the high gain

amplifier have better performance than the finite-time integrator when T' is small

and thermal noise is low.
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Table 3: Comparison between FTI and FP for G = 100, r = 0, and M = 10 (see
Figs. 6, 7, 8, and 12).

FTI Fabry-Perot Remarks
(Input Power) (Input Power) Improvement of

Wo (A2/Hz) (dBW) (dBW) FTI

10-22 -71.1 -70.0 1.1

10-23 -75.3 -73.0 2.3

1o-24 -78.5 -73.8 4.7

Table 4: Comparison between FTI and FP for G = 1000, r = 0, and M = 10 (see
Figs. 9, 10, 11, and 13).

FTI Fabry-Perot Remarks
(Input Power) (Input Power) Improvement of

Wo (A2/Hz) (dBW) (dBW) FTI

10-22 -78.5 -73.8 4.7

10-23 -79.6 -73.9 5.7

10-24 -79.8 -73.9 5.9
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Figure 12: Bit error probability versus input power as a function of postdetection
thermal noise W0 with optical amplifier gain G = 100, extinction ration r = 0,
M = 10. A: 10-22 A2/Hz, B: 10-' A2/Hz, C: 10-2' A2/Hz (finite-time integrator).
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Figure 13: Bit error probability versus input power as a function of postdetection
thermal noise W0 with optical amplifier gain G = 1000, extinction ration r = 0,
M = 10. A: 10-22 A2/Hz, B: 10-' A2/Hz, C: 10-24 A2/Hz (finite-time integrator).
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Figure 14: Bit error probability versus input power as a function of postdetection
thermal noise WO with optical amplifier gain G = 100, extinction ration r = 0,
M = 50. A: 10' A2/Hz, B: 10' A2/Hz, C: 10-24 A2/Hz (finite-time integrator).
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Figure 15: Bit error probability versus input power as a function of postdetection
thermal noise W0 with optical amplifier gain G = 100, extinction ration r = 0,
M = 50. A: 10-22 A2 //Hz, B: 10-23 A2/Hz, C: 10-24 A2/Hz (Fabry-Perot filter).
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Figure 16: Bit error probability versus input power as a function of postdetection
thermal noise W0 with optical amplifier gain G = 1000, extinction ration r = 0,
M = 50. A: 10-2' A2/Hz, B: 10' A2/Hz, C: 10-24 A2 /Hz (finite-time integrator).
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Figure 17: Bit error probability versus input power as a function of postdetection
thermal noise WO with optical amplifier gain G = 1000, extinction ration r = 0,
M = 50. A: 10-' A2/Hz, B: 10-23 A2/Hz, C:10-24 A2 /Hz (Fabry-Perot filter).
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"Table 5: Comparison between FTI and FP for G = 100, r = 0, and M = 50 (see
Figs. 14 and 15).

FTI Fabry-Perot Remarks
(Input Power) (Input Power) Improvement of

Wo (A2/Hz) (dBW) (dBW) Fabry-Perot is

10-22 -71.1 -71.1 0

10-23 -75.2 -75.4 0.2

10-24 -77.8 -78.5 0.7

Table 6: Comparison between FTI and FP for G = 1000, r = 0, and M = 50 (see
Figs. 16 and 17).

FTI Fabry-Perot Remarks
(Input Power) (Input Power) Improvement of

Wo (A 2/Hz) (dBW) (dBW) Fabry-Perot is

10-22 -77.7 -78.5 0.8

10-23 -78.35 -79.4 1.05

10-24 -78.4 -79.5 1.1
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C. FABRY-PEROT FILTER FOR MULTI-CHANNEL

In the previous section, we considered only the desired bit signal rather than

the ISI and ACI components since we dealt with a single channel. In this section,

we take into account the ISI and ACI components and our analysis focuses on the

multi-channel.

1. Mathematical Framework

For convenience, we designate channel 0 as the desired ch.annel and chan-

nel k as the adjacent channel where k = -M/2,.. ,-1,1,..., M/2 and M is an

even integer. We consider the equivalent lowpass (complex envelope) data signal in

channel 0 and channel k as follows,

0

bo(t) = E bo,iPT(t - iT) (57)
i=-bo

0

bk(t) = bk•eJ•ktpT(t - IT) (58)

where T is the bit duration, bo,ie{0, 1} is the bit in channel 0 in the time interval

(iT, (i+1)T), ble {0, ej'} is the fth bit in channel k in the time interval (IT, (t+1)T),

Ok is a phase offset between channel 0 and channel k, which is assumed to be

uniformly distributed in (0,27r) radians, and wk is the frequency spacing between

channel 0 and channel k in radians.

The function pT(t - iT) is defined as

1 iT<t < (i+l)T
PT(t - iT) = (59)

0 otherwise

The non-negative integers Lo and L in (57) and (58) represent the number of bits

in channel 0 and k, respectively, that precede the detected bits b0,o. The received
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WDM equivalent lowpass signal at the input of the Fabry-Perot filter is given by,

M/2

r(t) = V'_bo(t) + E v/'• bk(t) (60)
k=M/2

kgoo

where P is the received optical power and G is the gain of the preamplifier.

As we discussed in the previous section, the impulse response of the

Fabry-Perot filter is approximated by a single-pole RC filter of which the impulse

response is given in (32) as,

h(t) = ce-', t > 0 (61)

a. Derivation of the Detected Signal Envelope

The output preamplified and filtered signal Si(t) is given as,

S,(t) = SB(t) + Sisi(t) + SAcI(t), 0 < t < T (62)

where SB(t) is the desired bit signal, SIsI(t) is the intersymbol interference signal,

and SAcI(t) is the adjacent channel interference signal. These signals are evaluated

to obtain output filtered signals by using (60) and (61),

SB(t) = V' bo ojth(t- r)dr

= VG--b'o,0(1 - e-a), 0 < t < T (63)

- /(i+I)TS s1(t) = V)Ebo, T h(t-r)dT

i=fLo diT

-1
= V e-Ct E bo,i (e(i+l)cT - eicT) , 0 < t < T (64)

iLo

39



kM-M/2 1 .+1

*910
t,#

+bk,o j0 h(t - T)e'w~dT}

=•-P e- M E f rb,,, (e(c+jwh)(I+1)T e'-(C+j"t

hin-M/2C+ k

+b-.o (i(c+j•_) } , 0 < t < T (65)

The Fabry-Perot filtered output Si(t) is detected by the photode-

tector. The detected current signal is amplified by a low noise amplifier (LAN) that

contributes a postdetection thermal noise w(t) with spectral density No (A2/Hz).

The decision variable at the output of the integration is compared to a threshold a

to determine whether bit zero or bit one is present. The decision variable Y is given

by (37) as,

Y =X + W (66)

where

XG = PTR RISi(t)I2dt (67)

I = 1 W(t)dt (68)
TRGP o

We obtain the signal component Xi by substituting (62), (63), (64), and (65) into

(67) as a function of cT and wkT, which represents the impact of ISI and ACI,

respectively. Xi can be obtained from (C.19) for the worst case analysis as follows

[29],

1 _ 2 ecT) 1 e_2cT)]
- TRGP i--D(1 - + 2-c-T
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+bj. [_.L(l -2c + 0b.b- [(1 - 2e-cT + e-2cT)]

+ 2 +-C T)Re{b}(b- bo,o)

W/2 (69a)

k.-M/2 + (Wk
\ C/

kJo

where

bop = 0 for bit zero b=o = 1 for bit one,

b- = 1 for bit zero b- = 0 for bit one,

b=1 for bit zero b=0 for bit one

in the worst case analysis.

For the exact case analysis, X,, which is derived in [29] for the case

without the optical amplifier, can be modified for our case as follows,

1 12•
Xi = TRGP T RIS,(t)I dt

GP 1 [TRGPb2,O [1 _ 2 (1 _ ecT) + i -(1 e/-2T)

2cTPTT2c

1 (j 2cT) Ic _ -1

+TRGP--1 (_ e/2, Mj/2 bkT/c

c E E( I + jwkT/c)1 cwT/Y

k-MU/2 f

kjIO

2

(e (CT+iWkT)(I+1) e (cT+iuI&T)t)I

+TRGP1 M/2 M/2 bo;,

TT 1: E TI+ jWkT/cT)(1-jw ..T/cT)
k--M/2 m--M/2

hE0 miO
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rT +-(cT-i-kT) + 1 (cT+jwuiT) + 1e 1 c{ L2 - jWkT/CT I 1+ jw,,T/cT +2 ~c)

+2GPT±1RI M/2 M/2 -1fb,
cTcZ (1 + jWkT/cT)(1 - jwmT/cT)

k--M/2 ma -Mi/2

,(ecT+jwkT)(t+l) - e(eT+iu,&T)1) [.-(cT~jw..T) - 1 - 2cT)}

+GP~0 ,0 ~(1 + -2cT E e")> bo,, (C(i+l)cT _ icT)

+GPTbo~o41Re { (1 + -2 cT - 2 ,&cT)

M/2 -1 bk,I (ecTljWkT)(I+I) _ e(cT+jwkT)l)

k=-M/2 £L wTc

M/2 (kO eJWkT + 1 CT 1 1 _2cT
+2 E e-kC +e

,-(cT-jWkT) -1 GPT -1

1 1 +~TC JJ TcTZ b,,((+T-ec)

A- -M/2 1=-L 1+~T
bioo

(,(cTj~kT(I+- _(cT+itwkT)i)

+ M/2 ~bk,O (-2(1 - e-(cT-jwkT) ) +-c 6b
E 1" + jWkT/CT 1 -jwkTIcT

kin-M/2

bioo

Using the fact that the noise nc(t) and n.(t) are independent over disjoint intervals

and the random variables Nc and N, are independent identically distributed (iid)

Gaussian random variables with zero mean and the variance or computed from
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(B.18) and given by (46), we can employ the variance as,

G - 1)c as described in (46) (70)

=4MGP

b. Derivation of Probability Density Function

As it is explained in the first and second section as well, Xi is

noncentral chi-square distributed with the following pdf also given in (47)-1/
e(xj+02)j2,? 'M-i

fx, (X,) = h (, 12 (71)

where 02 is described as in (69)

bo,o = 1 for bit one (72)
V (1_+1 r:)

bo,o = VW +r) for bit zero (73)

N, phf(G - 1)c

4MGP as in (46) (74)

The special case where the extinction ratio r = 0 introduces the chi-square pdf given

by (52) and [18],
1 ,M-1,.-To/2f(75

f~0 (Xo) = (M - 1)!( 2 o2)M'0 (75)

2. Bit Error Probability

For a detection threshold a and an ISI/ACI pattern b = {bo,j, bkel where

i = -Lo,--., 0 and k = -M/2,..., M/2(k # 0), the bit error probability is defined

as in (53),

A M)= 1e rfc( a - xo(b)) + 1~ (af X(b) -a) (76)

where

W0P (77)
4 3 T(RGP)
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Bit error probability for the worst case analysis and exact analysis are obtained by

taking the expected value of Pb(xo, x1) with respect to x0 and z, by using (69a) and

(69b), respectively.

Pb for the worst case analysis:

Pb J00 erfc (c'- _O(b) f.(x)dx + 1 j 00 erf '(zb) £)f.,(x 1,)dx. (78)

Pb for the exact analysis:

Pb= - 4 f- 2. erjc ( 2 f-0(o)dodxo

f-0'r (XIb f. (x,)d~dx1

The optimal threshold a that minimizes the bit error probability is the value that

satisfies the following equation,

j 00erfca ( •xO(b)) fr(xo)dxo = 0erc (Xl(b)• ) fr,(,,)dxl (79)

3. Numerical Results

In this section, we present the numerical results for the system employing

the optical amplifier and the Fabry-Perot filter in the receiver model for multi-

channel with the following parameters: bit rate Rb = 2.56 Gbps, optical amplifier

gain G = 1000, free spectral range FSR = 3800 GHz, M = 3 and 4, channel

spacing I = 8, 12, and c = 38.4 GHz. In our analysis, we consider that the signal is

band-limited and incorporate the degradation caused by the signals in the nearest

adjacent four channels. Since we deal with multi-channel in this section, we will see

the effect of ISI and ACI components on the performance of the system, unlike the

single channel case.
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For the worst case analysis with optimum threshold, bo,o = 0 for bit

zero, b0,0 = 1 for bit one. Figure 18 shows the effect of ISI and ACI for M = 3,

cT = 15, and I = 8, ' 2 in terms of bit error probability and input power (dBW). As

can be seen from the graph, the single channel requires -68.8 dBW in order to be

able to achieve bit error probability Pb = 10"15. The system with ISI but no ACI,

requires -67.5 dBW to achieve the same bit error probability, which corresponds

to a 1.3 dBW power penalty as compared to the single channel case. When the

adjacent -hannels are taken into account for cnannel spacing I = 12 and 8, the

power penalties are 3.8 and 6.0 dBW, respectively. As the channel spacing between

channels gets larger, the effect of ACI becomes less significant.

Figures 19 and 20 show the effect of the value of M, which is the ratio

of bit duration (T) to the time constant of the filter impulse response (T'). As

explained in section 2, the noise variance has a dependency on M as given in (46),

a•=N.ph f (G - 1 )
4MGP

A M decreases, the noise variance gets larger and more noise power is obtained

accordingly. As can be seen from the figures, more input power is required for

M = 3 rather than M = 4 at P6 = 1015 as expected from the results obtained in

the single channel case in section 2.

When we compare the worst case analysis and exact analysis with each

other, as we expected, exact analysis requires slightly less power than worst case

analysis in order t.o obtain the same probability of bit error Pb = 10-15 as shown in

Fig. 21.
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Figure 18: Bit error probability versus input power for Fabry-Perot filter with
G 1000, M = 3, W = 10-12 A2 /Hz (multichannel worst case analysis).
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Figure 19: Bit error probability versus input power for a Fabry-Perot filter as a
function of M with G = 1000, Wo = 10-23 A2 /Hz, I = 8.
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Figure 20: Bit error probability versus input power for a Fabry-Perot filter as a
function of M with G = 1000, Wo = 10-23 A2/Hz and I = 12.
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00 = 10-23 Al2 /Hz, M = 3, 1 = 8 (comparison between exact and worst
case analysis for multichannel).
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III. CONCLUSIONS

We have presented a detailed analysis of direct detection lightwave systems

employing an optical preamplifier at the receiver and derived the closed form ex-

pression for the bit error probability of WDM systems employing on-off (OOK) as

a modulation format. We have considered various cases in which the receiver model

uses either a finite-time integrator or Fabry-Perot filter operating in a single chan-

nel or multi-channel environment. We have taken into account the optical amplifier

noise, the postdetection receiver noise, the shot noise, and the effect of the nonzero

laser linewidth.

For the finite-time integrator, we conclude that the amplifier noise effect is

most pronounced at low postdetection thermal noise. A larger gain amplifier should

be used when the postdetection thermal noise is dominant, while a smaller gain

amplifier should be used when the postdetection thermal noise is small and amplifier

noise dominates.

The performance of the system employing the Fabry-Perot filter in a single

channel environment depends on the value of M, which is defined as the ratio of

bit duration to time constant of the impulse response of the filter. When we chop

the filter impulse response at z igh value of T', which requires a small value of M

based on the relation M and T' for a constant bit rate (M = TIT'), we conclude

that more power is required to achieve the Pb = 10" than chopping the impulse

response at a lower value of T'. The reason for this is that the noise variance of

the Fabry-Perot filter is inversely proportional to the value of M. As M decreases,

more power penalty is paid to obtain the same bit error probability.
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When we compare the system employing a finite-time integrator and the sys-

tem employing a Fabry-Perot filter, we conclude that the finite-time integrator has

better performance with a high gain amplifier under low thermal noise values than

the Fabry-Perot filter when we chop the impulse response of the filter at a high

value of T'. For a larger value of M, we conclude that the Fabry-Perot filter has

better performance with a high gain amplifier and low thermal noise values than

the finite-time integrator.

The system employing an optical preamplifier and a Fabry-Perot filter in a

multi-channel environment suffers from intersymbol interference and adjacent chan-

nel interference. When the channel spacing is large, the effect of ACI is small.
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APPENDIX A

Derivation of the Expected Value Y, = E{Xj} [33]

Taking the expected of (4) we obtain

P E=IS(t)1 T,2G---- E{1' rj(r)dr} (A.1)

Substituting (1) into (Al) we have

X,- TGpE { [VUG-P bej°(') + nc(T) + jn.(r)] dr]2}

-T' V Nophf (G - 1)

T T' E {e4"i)9(1) I T7+ T'GP

The laser phase noise O(t) is characterized by a Wiener process [16] such that its

derivative is a zero mean white Gaussian process of PSD 27r/ where / is the laser

linewidth. The variance of O(t) is 21rflt and it can be shown that

E- e-`0-1`l721 (A.3)

Substituting (A.3) into (A.2) yields

- 2M 2b? (/T-+ e _.-Tlm - MN1phf(G - 1) (A.4)
"Xi - M(7rT)2  - TGP
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APPENDIX B

Derivation of Xi and GC

Xi is the squared envelope signal detected by photodetector with responsivity R

and scaled by 1/TRGP. It is defined as in (4)

= 1 foRISi(t)12dt (B.1)
R =TRGP o

S,(t) = SB(t) = v•'G-Pboo fo h(t- r)dr (B.2)

h(t) = ceC, t > 0 (B.3)

Si(t) = v-G--Pbo,o (I - e0 < t <T (B.4)

1 Td_....(B .52)

Ti=yRGP f IV'' b~ ( I(B5( 2 (leT) + 1 (le_2.T))(B6
Xi = bo'o (1 - T- (B.6)

It is described in the first section, the noise n,(t) and n.(t) are independent over

disjoint intervals and the random variables NPk and N.k are independent identically

distributed Gaussian random variables with zero mean. Their variances in (46) can

be computed as follows,

No(t) = • Lh(t -T)nfl(')dr (B.7)

h(t) = h. (t)pT'(t) (B.8)

1 0<t<T'
pT'(t) "- (B.9)

1 0 otherwise

Nc()= 1 ;j- hIz(t - T)nc(,r)pTI(t - r)dT

I _ h ... (t - ,r)n(r)d-r
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N(nT') = T' h-(nT'- T)n,(r)dr (B.10)

n.or) = No (B.11)2

2 = 2 No pTE h2(nT'- T)dT (B.12)

N = NoN 2MGP JI(n-I)T'

using r' = nT' -,

2 a. = 22 N h(r)(-dr)

a N . 2MGP

No  T' No
h h(r)dr- N0  002(~d

2MGP 0o 0 d 2MGP Jo h (r)dr

N. (B.13)
Nc =N 2MGP-

where T'
C= h 2(r)dr (B.14)

If we use the approximated RC filter of which impulse response h(t) given as

in (B.3)

2c ON - No2 (B.15)aC"= N v 2MGP

where

e= fr'h 2 (t)dt
0 =0

= foTI(ce-t)2dt

E= (1 - e-CT') (B.16)

We can approximate £ as c/2 since the exponential term goes to zero due to the

high value of 2cT'.
C
C60 P'- (B.17)
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Finally, the variable is found as

2 =a2 No c
'N N. No 2MGP 2

2 = N.ph1(G - 1)c (8.18)
ac = •N. 4MGP

We also know that this variance value can be represented by

2 2 2
N 2. = o, in pdf (54) (B.19)

where N.p (the spontaneous emission factor) is unity and

c = FSR(1 - p) (B.20)

P
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APPENDIX C

Data signal in channel k:
0

bk(t) = E bk,,teJW' tpT(t - IT) (C.1)
t=-L

Data signal in channel 0:
0

bo(t) = > bo,,pT(t - iT) (C.2)

Bit in channel k in L' time interval (IT, (I + 1)T)

bk,t E {0, eA. }

Bit in channel 0 in ith time interval (iT, (i + 1)T)

bo,, E {0,1}

Detected bit in (0, T)

bo,o E {0,1}

depending on where bit zero or bit one is present.

Desired channel = channel 0

Adjacent channel = channel k, where

M M
k --- , * **,-1,1,. 1 •-,M even integer

Wk = Frequency spacing between channel k and channel 0

Wk = 2rk1 (C.3)

Ok = Phase offset between channel k and channel 0 uniformly distributed over (0, 27r)

p2.(t) = 0<t<T

{0 otherwise
(C.4){1 iT < t < (i + 1)T

PT(t -iT)
0 otherwise
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The received signal at the output of the preamplifier and at the input of the Fabry-

Perot filter (for channel 0)

M/2
r(t) = v/-bo(t) + E G/--'Pb,(t) (C.5)

k=--M/2

k1O

where P is the optical power and G is the optical amplifier gain.

The output of the Fabry-Perot filter is00
ro(t)o L h(t - r)r(r)dr (C.6)

where h(t) is the equivalent lowpass impulse response of the Fabry-Perot filter of

channel O,

h(t) = cc' t > 0 (C.7)

M/2

ro(t) = v/• /I h(t - r)bo(r)dr + I 1 L h(t - r)bk(r)dr

kI--M/2

k#O

= v/' bo,ojfm h(t - r)pi(r)dr
€00

V/'G--P bo, h(t - r)pT(Tr - iT)dr
i=- Lo 00

M/2 0o o
"+ V--P E E bk,j ) h(t -7T)C 9 w'klpT(T - £T)dr (C.8)

k--M/2

kiO

Since we are interested only in the detection interval 0 < t < T, we need to evaluate

S(t) = to(t), 0 < t <T
to -1 +'I) M/

S(t) = iV/•Tbo,o jh(t-T)dr + VI bo,i i lT h(t-r)dT+ rG-P M
i 0-Lo k--M/2

kVIO

( [.=-L bkt J) h(t - r)eJwk'dr] + bk,o j h(t - r)elwkdT) (C.9)
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SMt SB(t) + SIC(i) + SAcI(t) (C.10)

where

SBs(t) =/~ xA- bo~o 0] h(t - T)dr (C. 11)

+b:,0t J l-P1 oiJ h(t -Terhd)d (C.12)

i=--L i

M/2 (+)
S ACI~t) = '/GiceP blIJ ~ -re-~

C+J 'T
k -M/2

kjiO

+b,:O J h~t-,re-"kdr)(C.13)

SS1(t) = v1/-Pbool e' 0 < t < T (C.14)
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bk, -= bk,o = b, L =

U/2 ejwA~t
S-`I()= M/2- be 0 < t < T (C.18)

kn-M/2 +- I -

C
khO

with I = integer > 0 and wk = 21rkI/T,

X = Rj IS,(t)12dt (C.19)

By using (C.14), (C.17), and (C.18), the evaluation of integrals gives the value of

Xas

x TRP R 4 (1 -T + 21-(1T -
LTRP (GP cTT ' 2-( Tc)

+b2 _[ (1_-2e-cT)] + bo,b_ -(1 - 2e-cT + -2cT)]

+[1bJ2 + 2L(I - e-c T )Re{b}(b- - 4oo)

k) 21)])
ka-MI2 c

kO
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